6 Kern-Modelle

6.1 Das Fermi-Gas-Modell

Die Bethe-Weizsäcker'sche Massenformel $M_{atom}(A, Z)$ findet ihre Erklärung im **Tröpfchenmodell** des Atomkerns. Die Parameter der einzelnen Terme $(a_r, a_s, a_{sym}, \ldots)$ stammen vor allem aus Beobachtungen und Messungen. Dieses Modell gibt kaum Einblicke in Struktur und Dynamik des Atomkerns. Viele Eigenschaften vn Atomkernen sind besser in einem **Einteilchen-Modell** zu verstehen.

Grundannahme: Nukleonen bewegen sich im Kern uanabhängig von einander (keineswegs selbstverständlich!)

Einfachste Version eines Einteilchen-Modells: Fermigas-Modell

Nukleonen bewegen sich **frei** innerhalb des Kernvolumens. Dort spüren sie ein konstantes, attraktives mittleres Potential (verursacht von der NN-Wechselwirkung).

Zahl der Zustände, die ein Nukleon in einem Volumen V im Impulsintervall [p, p + dp] einnehmen kann:

$$dn = \frac{V4\pi p^2 dp}{(2\pi\hbar)^3}$$

Nukleonen (Protonen/Neutronen) haben Spin 1/2, sind sogenannte Fermionen, die Pauliprinzip gehorchen.

Jeder Zustand kann nur einmal besetzt werden

 \Rightarrow Im Grundzustand des Kerns werden die niedrigsten Energiezustände bis zu einem Maximalimpuls, dem sog. Fermi-Impuls p_f , besetzt sein.

Gesamtzahl der Zustände

$$n = \int_{0}^{p_f} dp \frac{dn}{dp} = \frac{V p_f^3}{6\pi^2 \hbar^3}$$

Nun kann noch jeder Impulszustand spin \uparrow oder spin \downarrow tragen. (Faktor 2) Zahl der Neutronen bzw. Protonen

$$N = \frac{V(p_f^{(n)})^3}{3\pi^2\hbar^3}, \ Z = \frac{V(p_f^{(p)})^3}{3\pi^2\hbar^3}$$

mit $p_f^{(n)}$ und $p_f^{(p)}$, den Fermi-Impulsen der Protonen/Neutronen.

Das Kernvolumen $V = \frac{4\pi}{3}R_0^3 A$ mit $R_0 = 1, 21 fm$. Damit erhält man für einen Kern mit N = Z = A/Z und gleichem Radius der p/n-Potentialtöpfe

$$P_{f} \!=\! p_{f}^{(p)} \!=\! p_{f}^{(n)} \!=\! (3\pi^{2}\hbar^{3}\frac{A}{2V})^{1/3} \!=\! \tfrac{\hbar}{2R_{0}}(9\pi)^{1/3} \!=\! \tfrac{1.52\hbar}{R_{0}} \!\approx\! 250 MeV/c$$

Nukleonen können sich demnach im Kern mit großem Impuls frei bewegen. Die kinetische Energie des höchsten bsetzten Zustand beträgt

$$E_f = \frac{p_f^2}{2M} \approx 33 MeV$$

und heisst Fermi-Energie ($M = 939 MeV/c^2$ Nukleonmasse)

Die Differenz B' zwischen der Oberkante des Potentialtopfs und der Energie an der Fermi-Kante ist für die meisten konstant und beträgt 7 - 8MeV.

-> Tiefe des Potentialtopfs $V_0 = E_f + B' = 40 MeV$ ist in guter Näherung unabhängig von der Massenzahl. Ähnlich wie beim Elektronengas in Metallen liegt im Kern ein **Nukleongas** vor, dessen kinetische Energie vergleichbar mit der Potentialtiefe ist. Kerne sind **relativ schwach gebundene** Systeme!

Bemerke:Beim Einbringen von mehr Nukleonen bleiben V_0, p_f, E_k sowie die Dichte $\rho = 2p_f^3/3\pi^2\hbar^3$ konstant. Es wächst proportional zu A das Kernvolumen, so dass Platz für mehr Zustände entsteht: $A = V \cdot 2p_f^3/3\pi^2\hbar^3$

Asymmetrie-Energie im Fermigas-Modell Schwere Kerne besitzen Neutronenüberschuss: $N > Z \Rightarrow p_f^{(n)} > p_f^{(p)}, E_f^n > E_f^p$ Für stabile Kerne müssen die Fermi-Kanten der Protonen und Neutronen auf gleichem Niveau

Für stabile Kerne müssen die Fermi-Kanten der Protonen und Neutronen auf gleichem Niveau liegen, sonst würde eine Kernumwandlung durch β -Zerfall zu einem energetisch günstigerem Zustand führen.

 \Rightarrow Tiefe des p-Topfs geringer als die des Neutronen-Topfs.

Coulombab
stoßung der Protonen ist dafür verantwortlich. $V_c = (Z-1) \frac{\alpha \hbar c}{R}$

p/n -Töpfe liegen räumlich übereinander.

Betrachte Abhängigkeit der Bindungsenergie vom NeutronenüberschussN-Z: mittlere kinetische Energie pro Nukleon

$$\langle E_{kin} \rangle = \frac{\int_0^{p_f} dp \, p^2 E_{kin}(p)}{\int_0^{p_f} dp \, p^2} = \frac{3}{p_{f^3}} \frac{1}{2M} \frac{p_f^5}{5} = \frac{3p_f^2}{10M} = \frac{3}{5} E_k$$

Gesamte kinetische Energie des Kerns

$$E_{kin}(N.Z) = N\langle E_{kin}^n \rangle + Z\langle E_{kin}^p \rangle = \frac{3}{10M} [N(p_f^n)^2 + N(p_f^p)^2]$$

Fermi-Impulse gegeben durch Dichten:

$$p_f^n = (3\pi^2\hbar^3\frac{N}{v})^{1/3} = \frac{\hbar}{R_o}(\frac{9\pi}{4})^{1/3}(\frac{N}{A})^{1/3}$$

entsprechend

$$p_f^p = \frac{\hbar}{R_0} (\frac{9\pi}{4})^{1/3} (\frac{Z}{A})^{1/3}$$

Dies ergibt:

$$E_{kin}(N,Z) = \frac{3\hbar^2}{10MR_0^2} (\frac{9\pi}{4})^{2/3} \frac{N^{5/3} + Z^{5/3}}{A^{2/3}}$$

Entwickle dies bei festem A in $N-Z = \Delta$

$$\frac{3\hbar^2}{10MR_0^2}(\frac{9\pi}{4})^{2/3}A^{-2/3}[(\frac{A+\Delta}{2})^{5/3} + (\frac{A-\Delta}{2})^{5/3}] = \frac{3\hbar^2}{10MR_0^2}(\frac{9\pi}{8})^{2/3}\{A + \frac{5}{9}\frac{(N-Z)^2}{A}\}$$

 $\frac{1}{4}a_{sym}=\frac{5}{9}\langle E_{kin}\rangle=\frac{p_f^2}{6M}=\frac{E_f}{3}\approx 11 MeV$ entspricht der Hälfte des empirischen Werts von $a_{sym}=93,15 MeV$

6.2 Das Schalenmodell des Atomkerns

Empirische Hinweise auf Schalenstruktur im Atomkern. "Magische" Zahlen: 2,8,20,28,50,82,126,...

Wenn Neutronzahl N oder Protonzahl Z eine magische Zahl ist, ist der entsprechende Kern besonders stabil.

- große Seperationsenergie für ein Nukleon
- Fügt man weiteres Nukleon hinzu, so ist dessen Separationsenergie wesentlich kleiner. Analog zu e^- in Atomhülle:
 - Edelgase: große Ionisierungsenergie
 - Alkalimetalle: kleine Ionisierungsebergie
- Ist Z oder N eine magische Zahl, so gibt es besonders viele stabile Kerne
 - 6 Kerne mit N=50 , 7 Kerne mit N=82
 - $-_{Z=50}Sn$ hat 10 natürlich vorkommende Isotope
 - Außergewöhnlich stabil: doppelt magische Kerne ${}^4_2He,\,{}^{16}_8O,\,{}^{40}_{20}Ca$, ${}^{48}_{20}Ca,\,{}^{208}_{22}Pb$

- Nukleonen bewegen sich in mittleren (sphärischen) Kernpotential
- Besetzung der Einteilchenniveaus gemäß Pauliprinzip
- mittleres Kernpotential wird selbstkonsistent durch NN-Wechselwirkung erzeugt NN-Wechselwirkung ist kurzreichweiti

$$\to V(r) \sim \varrho(r)$$

 $\varrho(r)$ ist die Nukleonendichte.

- Gebundene Zustände im sphärischen Potentialtopf Wellenfunktion: $\Psi_{nlm}(\vec{r}) = R_{nl}(r)Y_{lm}(\vartheta,\varphi)$ (Kugelflächenfunktion) $n = 1, 2, 3; \ldots$ Zahl der Knoten – 1, Hauptquantenzahl l = 0, 1, 2, 3 Bahndrehimpulsquantenzahl = s, p, d, f
- Entartung von E_{nl} ist 2(2l+1)
- Harmonischer Oszillator

•
$$V(r) = -V_0(1 - \frac{r^2}{R^2})$$

 $\frac{m}{2}\omega^2 = \frac{V_0}{R}$
 $E_{nl} = -V_0 + \hbar\omega(\underbrace{n_x + n_y + n_z}_{2(n-1)+l} + \frac{3}{2}) = -V_0 + \hbar\omega(2n+l-\frac{1}{2})$

• Realistischer: Woods-Saxon Potential

$$V(r) = \frac{-V_0}{1 + e^{(r-R)/a}}$$

 V_0 : Potentialtiefe, R: "Kernradius", a:Randunschärfe $V_0 = 51 \, MeV$, $R = 1,27 \, fm \cdot A^{1/3}, a = 0,67 \, fm$ \rightarrow Die ersten drei magischen Zahlen (2,8,20) können erklärt werden, die restlichen **nicht**!

 Grundlegende Idee von Mayer-Goeppent, jensen Haxel und Suess (1949), Nobelpreis (1963). Wechselwirkungsenergie zwischen Spin und Bahndrehimpuls der Nukleonen ist entscheidend.

Spin-Bahn-Kopplung

Atomhülle: Spin-Bahn-Wechselwirkung \rightarrow Feinstrukturaufspaltung

• Aufspaltung ist kleiner Effekt: $\propto \alpha^2$, $\alpha = \frac{e^2}{4\pi} = \frac{1}{137,036}$

Mittleres Kernpotential

$$V_{\text{Kern}}(r) = V_c(r) + V_{ls}(r) \cdot \vec{l} \cdot \vec{s}$$

- $\vec{l} = -i\hbar \vec{r} \times \vec{\nabla}$ Bahndrehimpuls
- $\vec{s} = \frac{\vec{\sigma}}{2}$ Nukleonen-Spin

Gesamtdrehimpuls $\vec{j} = \vec{l} + s$ ist die Erhaltungsgröße $[V_{\text{Kern}}(r), \vec{j}] = 0$ Quantenzahl $j = l \pm 1/2$ Zustände gekennzeichnet durch $nljm_j$ Entartung von E_{nje} ist 2j + 1

- $\vec{l}\vec{s} = \frac{1}{2}[\vec{j}^2 \vec{l}^2 \vec{s}^2] = \frac{1}{2}[j(j+1) l(l+1) \frac{3}{4}] = l/2$ für j = l + 1/2-(l+1)/2 für j = l - 1/2Spin-Bahnaufspaltung wächst mit $l : \Delta E_{ls} = (l+1/2)\langle V_{ls}(r) \rangle$
- Im Atomkern sind die Verhältnisse umgekehrt zu denen in der Atomhülle
 - Zustand mit j = l + 1/2 wird abgesenkt. Zustand mit j = l - 1/2 wird angehoben. $\langle V_{ls}(r) \rangle_{\text{Kern}} < 0$

- − Spin-Bahnaufspaltung ist groß, beeinflusst wesentlich die Niveaufolge z.B: Zustand $1f_{7/2}$ wird stark abgesenkt → magische Zahl 28
- Empirische Parameterisierung des Spin-Bahn-Potentials

$$V_{ls}(r) = \tilde{U}_{ls} \frac{1}{r} \frac{df(r)}{dr}, \ f(r) = \frac{\varrho(r)}{\varrho(0)} = \frac{1}{1 + e^{(r-R)/a}}$$

 \tilde{U}_{ls} : Stärkeparameter $\simeq 35 \, MeV \, fm^2$

• Schematisches Schalenmodell Potential

6.3 Einfache Vorhersagen des Schalenmodells

Annahmen: zentralsymmetrisches mittleres Potential, Restwechselwirkungen der Nukleonen vernachlässigbar. Anwendbar auf sphärische Kerne in der Nähe von Schalenabschlüssen. Einteilchen- und Ein-Lochzustände können wesentliche Kerneigenschaften beschreiben.

Beispiele:

```
• {}_{16}^{35}S_{19}

p: 1s_{1/2}, 1p_{3/2}, 1p_{1/2}, 1d_{5/2}, 2s_{1/2} gefüllt

n: 1s_{1/2}, 1p_{3/2}, 1p_{1/2}, 1d_{5/2}, 2s_{1/2} gefüllt

1d_{3/2} -Schale hat ein Neutronenloch.

Grundzustand J^p = \frac{3}{2}^+

• {}_{38}^{87}Sr_{49}

p: 1s_{1/2}, 1p_{3/2}, 1p_{1/2}, 1d_{5/2}, 2s_{1/2}, 1d_{3/2}, 1f_{7/2}, 2p_{3/2}, 1f_{5/2} gefüllt

n: 1s_{1/2}, 1p_{3/2}, 1p_{1/2}, 1d_{5/2}, 2s_{1/2}, 1d_{3/2}, 1f_{7/2}, 2p_{3/2}, 1f_{5/2}, 2p_{1/2} gefüllt

1g_{9/2}-Schale hat ein Neutronenloch.

Grundzustand J^p = \frac{9}{2}^+

• {}_{20}^{41}Ca

p: 1s_{1/2} - 1d_{3/2} gefüllt

n: 1s_{1/2} - 1d_{3/2} gefüllt

n: 1s_{1/2} - 1d_{3/2} gefüllt

einzelnes Neutron in 1f_{7/2}

Grundzustand J^p = \frac{7}{2}^-
```


Spiegelkerne um ${}^{16}_8O$

Magnetische Momente der Kerne Die Spins und Bahndrehimpulse der Nukleonen einer gefüllten j-Schale koppeln zu Null.

 \rightarrow Drehimpuls und magnetisches Moment des Kerns wird vom "Leucht"-Nukleon. (bzw. von Nukleon-Loch) bestimmt.

$$\hat{\mu}_{Kern} = g_e \vec{l} + g_s \vec{s}$$

gyromagnetische Faktoren

 $g_e = \begin{cases} 1 \text{ Proton} \\ 0 \text{ Neutron} \end{cases}$ $g_s = \begin{cases} 5,58 \\ -3,82 \end{cases} \text{ für } \begin{array}{c} \text{Proton} \\ \text{Neutron} \\ \mu_{Kern} = \langle jj | \hat{\mu}_{Kern,z} | jj \rangle = g_{Kern} \langle jj | jz | jj \rangle = g_{Kern\cdot j} \end{cases}$

Vektorprojektions-Theorem:

$$g_{Kern} = \frac{\langle jj | \vec{\mu}_{kern} \cdot j | jj \rangle}{\langle jj | \vec{j^2} | jj \rangle}$$

Benutze: $2\vec{lj} = \vec{j}^2 + \vec{l}^2 - \vec{s}^2$ $2\vec{sj} = \vec{j}^2 + s^2 - \vec{l}^2$ Damit ergibt sich:

$$g_{\text{Kern}} = \frac{1}{2}(g_e + g_s) + \frac{1}{2}(g_e - g_s)\frac{l(l+1) - s(s+1)}{j(j+1)}$$

Werte dies getrennt aus: $j = l + \frac{1}{2}$: $\frac{l(l+1)-3/4}{(l+1/2)(l+3/2)} = 1 - \frac{2}{2l+1}$ $j = l - \frac{1}{2}$: $\frac{l(l+1)-3/4}{(l-1/2)(l+1/2)} = 1 + \frac{2}{2l+1}$ $g_{\text{Kern}} = g_e \pm \frac{g_s + g_e}{2l+1}$ für $j = l \pm 1/2$ (Schmidt'sche Linien)

Kern	Grundzustand	J^P	Schalenmodell	Experiment
${}^{15}_{7}N$	$p - 1p_{1/2}1$	$\frac{1}{2}^{-}$	-0,264	-0,283
$^{15}_{8}O$	$n - 1p_{1/2}1$	$\frac{1}{2}^{-}$	+0,638	+0,719
$^{17}_{8}O$	$n - 1d_{5/2}$	$\frac{5}{2}^{+}$	-1,913	-1,894
${}^{17}_{9}F$	$p - 1d_{5/2}$	$\frac{5}{2}^{+}$	4,722	+4,793

6.4 Messung magnetischer Momente von Kernen

Zwei prinzipielle Methoden:

- WW des Kernmoments mit inneren Atom- oder Molekülfeldern
- WW des Kernmoments mit äußeren Magnetfeldern

6.4.1 Hyperfeinstruktur(HFS)aufspaltung im Magnetfeld der Atomhülle

Drehimpulse \vec{J}_A von Atomhülle und \vec{J}_K von Kern koppeln zum Gesamtdrehimpuls

$$\vec{F} = \vec{J}_A + \vec{J}_K$$

F-Quantenzahl kann Werte $J_A+J_K,\,J_A+J_K-1,\ldots,|J_A-J_K|$ annehmen.
— $2\,J_K+1$ Kopplungsmöglichkeiten für $J_A\geq J_K$
— $2\,J_A+1$ Kopplungsmöglichkeiten für $J_K\geq J_A$

Energieniveaus des Atoms

$$E_{J_A,J_K} = E_{J_A + \Delta E_{HFS}}$$

 E_{J_A} : Energieniveau der Elektronenhülle

$$\Delta E_{HFS} = -\vec{\mu}_K \cdot \vec{B}_A$$

$$\vec{B}_A = -a \frac{\vec{J}_A}{\left| \vec{J}_A \right|}$$

 \vec{B}_A : Magnetfeld der Hüle am

$$\vec{\mu}_K = g_K \mu_N \frac{\vec{J}_K}{\hbar}$$
$$\rightarrow \Delta E_{HFS} = a \, g_K \, \mu_N \frac{\vec{J}_A \cdot \vec{J}_K}{\hbar |J_A|}$$

Bestimmung des Magnetischen Moments am Kern erfordert die Bestimmung von B_A .

6.4.2 HFS-Aufspaltung im äußeren Magnetfeld

Beispiel: $J_A = \frac{1}{2}, J_K = \frac{3}{2}$

b)
$$\vec{\mu}_A \cdot \vec{B} \ll \vec{\mu}_K \cdot \vec{B}_A$$

c)
$$\vec{\mu}_A \cdot \vec{B} \gg \vec{\mu}_K \cdot \vec{B}_A$$

Paschen-Back-Effekt / entkoppelte Einzeldrehimpulse

 $\Delta E_{HFS} \rightarrow -g_K \mu_N B m_{J_K}$

d.h. Magnetfeld der Hülle spielt keine Rolle mehr! $\Rightarrow \frac{\delta_{g_K}}{q_K} \rightarrow 0, 1\%, \text{ sprich deutlich genauer!}$

6.4.3 Molekülstrahlmethode

a) Stern-Gerlach-Effsekt ablenkende Kraft: $F_Z = \frac{\partial}{\partial z} \left(\vec{\mu} \cdot \vec{B} \right) = (\vec{\mu}_K + \vec{\mu}_A) \frac{\partial \vec{B}}{\partial z}$ \hookrightarrow Messung von Kernmomenten erfordert diamagnetische Atomhülle (ansonsten wird der Effekt durch $\vec{\mu}_A$ dominiert). **Problem**: geringe Ablenkung des Strahls z.B.: H_2 -Moleküle (Stern, Frisch, Estermann 1933) für eine erste Bestimmung von μ_K des Protons $\frac{\partial B}{\partial z} = 800 \text{ Tm}^{-1}$, Flugweg: 1,5 m, Strahlablenkung: 10^{-2} mm \hookrightarrow recht ungenaue Methode.

- b) Kernresonanz
 - Potentielle Energie des Kernmoments im äußeren Feld $\vec{B}, V = -\vec{\mu}_k \cdot \vec{B}$ hat Eigenwerte: $-g_K \mu_N B m_K$
 - $|\Delta E| = g_K \mu_N B$
 - Übergänge durch Einstrahlung von magnetischem hf-Feld $\perp \vec{B}$ mit $\hbar \omega = |\Delta E|$ $\Rightarrow \omega_{res} = \frac{g_{K}\mu_N}{\hbar}B =: \gamma B$ gyromagnetisches Verhältnis ω_{res} ist gleich der Lamorfrequenz ω_L des Kerns im Feld B.
 - Atomstrahlresonanz nach Rabi

6.4.4 Kernresonanz in flüssigen und festen Proben

6.5 Isospin von Atomkernen

Kozept des Isospins Proton und Neutron sind zwei Zustände eines Teilchens, des Nukleons \rightarrow analog zu spin-up und spin-down

$$|p\rangle \stackrel{\circ}{=} |\uparrow\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, |n\rangle \stackrel{\circ}{=} |\downarrow\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

Isospin-Operatoren $\vec{\tau} = (\tau_1, \tau_2, \tau_3)$
 $\tau_1 = \begin{pmatrix} 0&1\\1&0 \end{pmatrix}, \tau_2 = \begin{pmatrix} 0&-i\\i&0 \end{pmatrix}, \tau_3 = \begin{pmatrix} 1&0\\0&-1 \end{pmatrix}$
formal identisch mit Pauli-Spin-Matrizen $\vec{\sigma}$.
 $\vec{t} = \frac{\vec{\tau}}{2}$
 $t_3 |p\rangle = \frac{1}{2} |p\rangle, t_3 |n\rangle = -\frac{1}{2} |n\rangle$

 $t^2 |p\rangle = \frac{3}{4} |p\rangle, t^2 |n\rangle = \frac{3}{4} |n\rangle$ Das Nukleon hat Isospin $T = \frac{1}{2}$ (Isospin-doublett)

Isospin-Invarianz der starken Wechselwirkung $\left[H_{\mbox{stark}},\vec{\tau}\right]=0$

Unter Austausch von Protonen und Neutronen bleibt die starke Wechselwirkung gleich.

Elektromagnetische Wechselwirkung bricht (leicht) Isospin-Symmetri
e \rightarrow analog zum Spin im äusseren Magnetfeld.

\rightarrow Atomkern:

 $\left. \begin{array}{l} {\rm Proton}:T=\frac{1}{2},\,T_3=+\frac{1}{2}\\ {\rm Neutron}:T=\frac{1}{2},\,T_3=-\frac{1}{2} \end{array} \right\} \quad \begin{array}{l} {\rm Isospin-}\\ {\rm quantenzahlen} \end{array} \right\} \quad \begin{array}{l} {\rm Nukleon\ ist}\\ {\rm Isospin-Dublett} \end{array}$

Ein Kern mit Z Protonen und N Neutronen (somit Massenzahl A=N+Z) hat $T_3 = \frac{1}{2}(Z - N)$ (T_3 ist additiv)

Was ist der Gesamt-Isospin *T* des Kerns? $\frac{|N-Z|}{Z} \le T \le \underbrace{\frac{A}{z} = \frac{N+Z}{Z}}_{Maximalwort}$

Bei Abschalten der elementaren Coulomb Wechselwirkung und des Proton-Neutron-Massenunterschieds (1,3 MeV) wird die Isospin-Symmetrie **exakt**.

 \rightarrow Ein Kerntzustand (Energieniveau) mit Gesamt-Isospin T ist (ZT + 1)-fach entartet und sollte in isobaren Kernen (A = N + Z gleich, N - Z verschieden) auftreten.

Solche Isospin-Multipletts nennt man isobare Analogzustände.

Beispiele:

- Grundzustand von $_7^{14}N$ mit $J^P = 1^+$ ist ein Isospin-Singulett (T = 0). Andernfalls gäbe es in $_6^{14}C$ einen aufgrund der geringeren Coulombenergie tieferligenden 1^+ -Zustand.
- ${}_{6}^{14}C$ und ${}_{8}^{14}O$ haben $T_3 = -1$ und $T_3 = 1$. Ihre 0⁺ -Grundzustände bilden zusammen mit dem ersten angeregten Zustand in ${}_{7}^{14}N$ ($T_3 = 0$) ein Isospin-Triplett.

- Der Grundzustand und die ersten fünf angeregten Zustände von ${}_{3}^{7}Li$ und ${}_{4}^{7}Be$ bilden **Isospin-Dubletts.**
- Bei schweren Kernen liegen solche (bzgl. Isospin entartete) Zustände oft im Kontinuum Isobare Analog-Resonanzen

• $p + {}^{208}_{82} Pb \rightarrow {}^{209}_{83} Bi^* \rightarrow p + {}^{208}_{82} Pb^*$

6.6 Deformierte Kerne

- Kerne mit abgeschlossenen Schalen sind kugelsymmetrisch
- Weit weg von abgeschlossenen Schalen (d.h. halbgefüllten Scahlen) polarisieren Nukleonen den Kernrumpf. Das mittlere Kernpotential ist nicht mehr kugelsymmetrisch und die Kerne sind deformiert.

Quadrupolmoment (aus Atomspektroskopie)

$$Q = \int d^3r (3z^2 - r^2)$$

Ellipsoid mit Halbachsen in z-Richtung und zwei gleichen Halbachsen b und $\rho(\vec{r}) = \text{konstant}$.

$$Q = \frac{2}{5}Z(a^2 - b^2)$$

mittlerer Radius

$$\langle R \rangle = {}^{3\sqrt{ab^2}}$$

Differenz

$$\Delta R = a - b$$

A 10

Deformationsparameter

$$\delta = \frac{\Delta R}{\langle R \rangle}$$
$$Q = \frac{4}{5} Z \langle R \rangle^2 \delta$$

wächst mit Kernladung und Kerngröße.

Besser geeignet zum Vergleich verschiedener Kerne: reduziertes Quadrupolmoment (direktes Maß für Deformation)

$$Q_{red} = \frac{Q}{Z \left\langle R \right\rangle^2} = \frac{4}{5}\delta$$

Betrachte einzelnes Proton ausserhalb abgeschlossener Schale

$$\begin{aligned} Q^{(P)} &= -\left\langle r^2 \right\rangle \frac{2j-1}{2(j+1)} = -Q^{(P-Loch)} \ (j \ge \frac{3}{2}) \\ Q^{(P,P-Loch)}_{red} &= \mp \frac{1}{Z} \ (\text{einige \%}) \end{aligned}$$

Beispiele:

 $-\frac{39}{19}K, Z = 19, N = 20$ doppelt magisch plus Protonloch in $1d_{3/2}$ -Schale

$$Q^{(exp)}(^{39}K) = 5,5 \text{ fm}^2, Q^{P-Loch} = 5,0 \text{ fm}^2$$

- $^{209}_{83}Bi,\,Z=83$, N=126 doppelt magisch plus Proton in $1h_{9/2}\mbox{-Schale}$

$$Q^{(exp)}(^{209}Bi) = -35 \text{ fm}^2, \ Q^{(P)} = -30 \text{ fm}^2$$

- Empirischer Befund:
 - Kerndeformationen sehr klein in der Nähe von magischen Zahlen (abgeschlossene Schalen)
 - -zwischen abgeschlossenen Schalen Q_{red} bis0,4. Die meisten großen Deformationen sind positiv

prolate Deformation, (d.h. zigarrenförmige Kerne) besonders ausgeprägt bei Seltenen Erden (Lanthaniden)

 $\overset{176}{71}Lu: Q_{red} = 0, 24, \overset{'}{_{68}} ^{176}Er: Q_{red} = +0, 32$

- in selteneren Fällen große negative Deformation **oblate** Deformation (d.h. linsenförmige Kerne) Transurane (Actiniden) $^{227}_{89}Ac: Q_{red} = -0,04, ^{123}_{51}Sb: Q_{red} = -0,09$ Ursache der Kerndeformation: Restwechselwirkung der Nukleonen in einer Schale
- im Mittel herrscht zwischen Nukleonen eine anziehende Kraft in der Atomphysik ist es umgekehrt: Elektron-Elektron-Abstoßung \Rightarrow Hundsche Regeln: besetze zuerst Ortspotentiale mit e^- , dann mit umgekehrtem Spin.
 - * Nukleon mit gleicher Ortswellenfunktion gruppieren sich in Paare mit $J^P = 0^+$: $l_1 = l_2, m_1 = -m_2, \vec{j}_1 + \vec{j}_2 = 0$ \rightarrow dadurch gewinnen Kerne zusätzliche Stabilität

- * Nukleonpaare besetzen bevorzugt Orbitale mit benachbarten m \rightarrow Deformation
- * Drehimpuls und Parität J^P der Kerne werden allgemein durch einzelene ungepaarte Nukleonen bestimmt.
 - · doppeltgerade (gg)-Kerne haben $J^P = 0^+$ Grundzustand
 - · einfachungerade (ug,gu)-Kerne: J^P durch leztes ungepaartes Nukleon bestimmt.
 - · doppeltungerade (uu)-Kerne: J^P aus Kopplung von ungepaartem Proton und ungepaartem Neutron

Rotationszustände Permanent deformierte Kerne besitzen charakteristische Anregungsmuster: Serien von Zuständen mit wachsendem Drehimpuls deren energetischer Abstand linear zunimmt.

Rotationsbanden (analog zu Molekülen)

= kollektive Kernanregung, an der alle Nukleonen beteiligt sind.

Deformierte (gg)-Kerne mit Grundzustand $J^P = 0^+$ (innerer Drehimpuls ist Null) Beispiele: ${}^{232}_{90}Th$, ${}^{238}_{92}U$, ${}^{238}_{94}Pu$, ${}^{170}_{72}Hf$, ${}^{120}_{54}Xe$, ${}^{182}_{74}W$, ${}^{170}_{70}Yb$, ${}^{156}_{66}Dy$, ...

wie symmetrischer Kreisel mit Hauptträgheitsmomenten $\Theta_1 = \Theta_2 = \Theta \neq \Theta_3$

Bei quantenmechanischem System kann keine kollektive Rotation um eine Symmetrie-Achse auftreten.

 $J_{rot,3}$ |axialsym. Zustand $\rangle = 0$

 \rightarrow kollektive Rotation senkrecht zur Symmetrieachse

Hamiltonoperator der Rotation

$$H_{rot} = \frac{\vec{J}_{rot}^2}{2\Theta}$$

Energieeigenwerte

$$E_J = \frac{J(J+1)}{2\Theta}$$

Eigenfunktion: Kugelflächenfunktion Y_{JMj} : Aus Symmetriegründen sind bei 0⁺-Grundzustand nur gerade $J = 0, 2, 4, \ldots$ erlaubt

Invarianz bei Spiegelung an 12 ; Faktor $(-1)^J$ von Y_{Jm}

 \rightarrow Energieabstand aufeinanderfolgender Rotationszustände

$$E_{j+2} - E_j = (2J+3)/\Theta$$

nimmt linear mit J zu. Beispiel: ${}^{232}_{90}Th$

elektrische Quadrupolübergänge \rightarrow beobachtet mittels γ -Spektroskopie

Erzeugung der Kernrotationszustände mittels Coulombanregung Vorteil: reine elm. WW, keine inneren Anregungen des Kerns

$$E_{ans} < \frac{Z_1 Z_2 \alpha}{R_1 + R_2}$$

Hochspin-Rekord: J = 60prolatsuperdeformiert: 2:1:1

Fusionsreaktionen

$${}^{48}_{20}Ca + {}^{108}_{46}Pd \rightarrow {}^{156}_{66}Dy \rightarrow {}^{152}_{66}Dy + 4n$$

Drehimpuls se

$$J^{max} = (R_1 + R_2)\sqrt{2M_{red}E_{kin}} = 180$$

Experimentell beobachtet: $J^{max} = 60$

Trägheitsmoment