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1 Implementation of the experiment

1.1 Determine the frequency and the constant of attenuation for the unforced linear gyration pendulum. That
means the pendulum works without an additional bob and with an attenuation current of 0.4A. For that,
observe the oscillation

1.1.1a) by hand

The attenuation current we used was (404 ± 1) mA. For time measurement, we used the provided mechanical
stopwatch which allowed us to note down the elapsed time t after 10 oscillations of the pendulum. The
precision of our meausrement was ± 0,3s. This error is due to the fact that the stopwatch jumps in quite large
intervalls (also around 0,3s) and the way we determined the exact moment of measurement (when the
pendulum completed an oscillation and arrived at it’s turning point, one of us gave a signal and the other
noted the elapsed time). 

measured data (10 oscillations)

# t [s]

1 20 ±  0,3 

2 20 ±  0,3

3 20 ±  0,3

4 20 ±  0,3

5 20 ±  0,3

These results were always exactly 20 seconds under the conditions of the described errors. This means, one
oscillation takes (2 ±  0,03) s.

Next, we measured the aplitude of the pendulum after each oscillation (10 oscillations).

measured data (amplitude)

The Amplitude A used in the following parts is bases on a cirular scale which was attached around the
pendulum. The scale was linear and proportional to the traveled way of the pendulum (actually the pointer).
We never hat measurements where it mattered on which side of the initial pendulum position the pendulum
was put to an oscillation, so we will only use positive values.

0 1 2 3 4 5 6 7 8 9 10

t [s] 0 2 ±  0,3 4 ±  0,3 6 ±  0,3 8 ±  0,3 10 ±  0,3 12 ±  0,3 14 ±  0,3 16 ±  0,3 18 ±  0,3 20 ±  0,3

A 15 ±  0,2 12 ±  0,2 9,4 ±  0,2 7,4 ±  0,2 5,8 ±  0,2 4,6 ±  0,2 3,6 ±  0,2 2,8 ±  0,2 2,2 ±  0,2 1,7 ±  0,2 1,3 ±  0,2

Because we were only two students doing the experiment, we had troubles simultaneously determining the
turning point of the pendulum, reading the amplitude A, the elapsed time t and writing theses values down.
Therefore, we assumed a time of 2 seconds per oscillation, which we measured before. Furthermore, the error
in time measurement of one oscillation (due to the inaccurate stopwatch) cofirmed our suspicion towards the
usefulness of the measurement.
Now, only measuring the amplitude, it was even quite difficult to write down the values. So we used a trick

and marked the amplitude of the pendulum per oscillation on the scale with a pencil and wrote down the
values afterwards.
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1.1.1.1Frequency

The frequency of the pendulum can be calculated with the values from 1.1.1. Because we have a
harmonic oscillation, the frequency is independant of the amplitude.

t10 = (20 ± 0,3) s
Th = (2 ± 0,03) s

ω
h
=

2 π

T
h

=
2 π

2 ± 0,03 s
= 3,1± 0,05 sB1

1.1.1.2Attenuation constant

The attenuation constant was computed with the mathematics software Microcal Origin 6.0. As input for
the program, we used our measured data.

The equation of the calculated linear fit is:
y = (2,73 ± 0,009) − (0,12 ± 0) · x 

This gives us a value of (–0,12 ± 0) s−1 for the attenuation constant λ
h

. The abation constant τ
h

computes to

τ
h
= 1

λ
h

= 1

B0,12 ± 0 sB1
= 8,33 s .

1.1.2b) with help of the computer

The measurement with the computer was exactly done as described in the experimental specification. We
didn’t change any parameters in the equipment, which means the attenuation current stayed (404 ± 1) mA.
We initiated the oscillation and started the measurement after providing the required data (we set the
measurement time to 22s) for the program „mess“. Except for a few mysterious „floating point“ and „abnormal
program termination“ errors, we had no problem plotting the graphs.

graph01 − „classic“ oscillation
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graph02 − only the oscillation peaks
graph03 − „phase space“

1.1.2.1Frequency

We determined the period per oscillation out of „graph01“ by measuring the distance between two
oscillation peaks and got the following result (the error is estimated to 0 when only two relevant digits are
used):

Tc = (1,9 ± 0) s

ω
c
=

2 π

T
c

=
2 π

1,9± 0 s
= 3,3± 0 sB1

1.1.2.2 Attenuation constant

Also the attenuation constant was determined (indirectly) out of „graph1“. How we got the final value for

τ
c

can be seen in the graph. Given τ
c

 , the attenuation constant λ
c

can be calculated:

τ
c
= 8,5 s

λ
c
= 1

τ
c

= 1

8,5 s
= 0,12 sB1

Regarding only two digits, λ
c

is identical to the λ
h

we calculated in 1.1.1.2.

1.1.2.3Comparison to results from 1.1.1

Comparing the computer measured values and the hand measured values of the frequency, we get the
following abberation:

ω
h

ω
c

= 0,95± 0,01

...which means we have an abbereation of the two values of (5 ± 1)%.

1.2 Measure the resonance graph of the pendulum with the computer and plot it. Determine the frequency of
resonance by using the graph.

1.2.1Frequency 

Using the same procedure as in 1.1, we collected data with the program „mess“. We used 10 different settings
of the motor speed.

motor speed t [s] T [s] max ω [s−1]

3 83 ± 0,3 8,3 ± 0,03 13 0,76 ± 0,03

4 46 ± 0,3 4,6 ± 0,03 17 1,37 ± 0,10

5 32 ± 0,3 3,2 ± 0,03 21 1,96 ± 0,20

6 25 ± 0,3 2,5 ± 0,03 31 2,51 ± 0,34

7 20 ± 0,3 2,0 ± 0,03 153 3,14 ± 0,55

8 16 ± 0,3 1,6 ± 0,03 23 3,93 ± 0,91

9 15 ± 0,3 1,5 ± 0,03 17 4,19 ± 1,05

6,5 22 ± 0,3 2,2 ± 0,03 83 2,86 ± 0,45

7,5 18 ± 0,3 1,8 ± 0,03 47 3,49 ± 0,70

7,3 19 ± 0,3 1,9 ± 0,03 85 3,31 ± 0,62

„motor speed“ are the values of the very rough und not very fine adjustable scale of the turning knob for the
speed of the motor. The time t measured for 10 oscillations has the same error as in 1.1 because we used the
same stopwatch. T is the period of the oscillation. „max“ are the values which were returned by the program
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„mess“. They were stored in files with the extension „.max“. The frequency f was calculated out of T.

Before we started to store data, we initiated the oscillation and waited until we couldn’t detect a change in the
amplitude of the oscillation with our eyes (for that, we looked at the scale attached to the pendulum
instrument). This way, the data which were stored in the „.max“ file should only contain a sequence of one
value, our maximum. Unfortunately, this wasn’t true. We had several other values in the data set, some
around our maximum and some quite far away. We don’t know why this is the case and therefore we
searched for the „maximum“ which had the most sequential occurences in the data set and took this value as
the maximum of the oscillation.

Using those values, the following graph was plotted (as x−axis we used the frequency ω ):

The graph (on paper „graph4“) shows clearly that resonance occurs at a frequency of about ω
r

= (3,1 ±

0,55) s−1.
This is not very surprising, because it is the natural frequency of the used pendulum, as we determined it in
1.1.

1.2.2Question: How does the deflection look like at a frequency of ω = 0?

If there is no force by the motor (frequency = 0) and the pendulum is not deflected by hand then there will
never be any deflection.

1.3 Verify equation 8 with the measured values.

Equation (8) in the experimental specification: ∆ ω= 1
(The given equation in our specification is wrong,  so we changed it to ∆ ω=λ )

After calculating A*= 2
A

max

2
and drawing the result in the graph („graph4“), we see that ∆ ω = 0,15

s−1. Compared to λ = (0,12 ± 0) s−1, this value is quite good for a graphical evaluation. The abberation could

even be smaller, if the graph would have been drawn in a higher resolution (more measured values).

To sum up, equation (8) can be regarded as verified ;)

1.4 Mount the bob on the small aluminium pointer.

We had no problem doing this... ;)

1.5 Record the oscillation of the pendulum (which is not linear now) with the computer and compare it to the
linear oscillation. 

Except for the additional weight, nothing was changed in the experimental settings. Comparing the graphs, it can
be seen that with additional weight, then pendulum does less oscillations in the fixed time of 30 seconds.
However, it is not possible to detect a significant change in the frequency which should be related to the
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amplitude because the pendulum is not linear now. A possible explanation we can think of is that a change in
frequency can only detected when the pendulum changes the side − which wasn’t the case in our experiment.
Therefore, we would have had to accelerate the pendulum when initiating the oscillation. Unfortunately we only let
go of the pendulum at one side (at scale position 3) and recorded it’s subdued oscillation.

1.6 Change the attenuation current and repeat the recording of the oscillation.

First, we doubled the attenuation current to (800 ± 1) mA and printed „graph6a“ and „graph6b“. It is evident that
using a higher attenuation, less oscillations are performed by the pendulum. Then we took half of the initial (404
± 1) mA and set the attenuation current to (203 ± 1) mA. As expected, the oscillation frequency got higher again
(see „graph7“).

1.7 „Play“ with the motor of the pendulum and try to find the first and second bifurcation. Record the
oscillation you find interesting and plot it.

We used the attenuation current of (203 ± 1) mA and started with a very low motor speed. In the beginning, the
system didn’t get enough energy and the pendulum couldn’t change the side. So we slowly increased the motor
speed and watched how the pendulum reacted. At a certain motor speed setting (around 5 on the scale) the
pendulum started to change the side and the oscillations got quite interesting (we found the first bifurcation). We
tried to print this behaviour, but unfortunately the program „zeichne“ did’t print out the „typical“ phase space −
only some incoherent lines were shown on the output. Bad luck for us, because these phase spaces make up
really nice pictures when visualized. So we used the less interesting visualisation and printed graph 8.
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